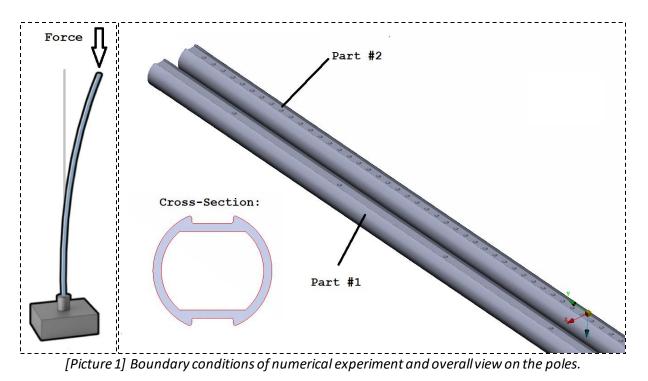
Aluminum poles - Buckling analysis report

<u>Objective of the analysis</u>: to find out numerically critical strength of aluminum poles with boundary conditions shown on Picture 1.



Several Methods were used for analysis:

- Analytical estimation (Euler buckling + local buckling)
- Linear buckling (NASTRAN SOL105)
- Non-linear buckling (NASTRAN SOL106 with LGDISP)

17

1. Analytical Estimation

Overall buckling

Input data:

Input data:

$$E := 68.9 \ GPa \qquad A := 177 \ mm^2 \qquad k_{Holes_Pole_2} := 0.038$$

$$L := 2372 \ mm \qquad J_1 := 12715 \ mm^4$$

$$\mu := 2 \qquad J_2 := 15040 \ mm^4$$

$$Pole #1 (neglecting holes): \qquad P_{Euler_Pole_1} := \frac{\pi^2 \cdot E}{(\mu \cdot L)^2} \cdot J_1 = 384 \ N \qquad \sigma_{Euler} := \frac{P_{Euler_Pole_1}}{A} = 2.17 \ MPa$$

$$Pole #2 (estimating holes): \qquad P_{Euler_Pole_2} := \frac{\pi^2 \cdot (E \cdot (1 - k_{Holes_Pole_2}))}{(\mu \cdot L)^2} \cdot (J_1 \cdot (1 - k_{Holes_Pole_2})) = 356 \ N$$

$$Local buckling: estimation of weaker (planar) side$$

$$Extra Input data: \qquad \delta := 2 \ mm \qquad k_{Boundary} := 3.6$$

$$b := 15 \ mm \qquad k_{Holes_on_Side} := \frac{168 \cdot \frac{\pi \cdot (5 \ mm)^2}{L \cdot b}}{L \cdot b} = 0.093$$

Critical force:

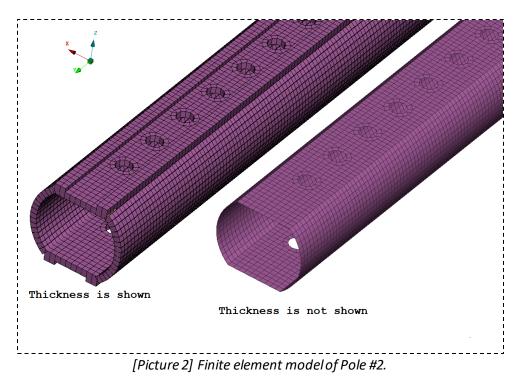
$$P \coloneqq \frac{k_{Boundary} \cdot E}{\left(\frac{b}{\delta}\right)^2} \cdot (b \cdot \delta) \cdot \left(1 - k_{Holes_on_Side}\right)^3 = 98800 \ N$$

Key points from analytical calculation:

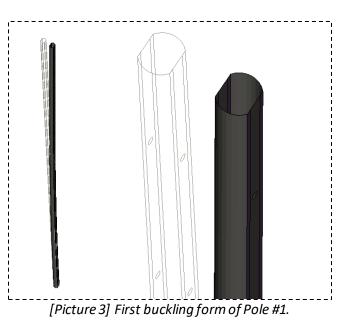
- Expected critical load for Pole #1 = 384 N, for Pole #2 = 356 N
- Critical stress is in aluminum linear zone (σ_Euler << σ_Yield_Al_6061)
- Local buckling is of no interest, since P_Local >> P_Overall

2. Numerical linear buckling

Finite-element model used for both linear and non-linear analysis is shown on Picture 2. Nastran CQUAD4 and CTRIA3 elements are used. CQUADs are used with offset and variable thickness.



First buckling form is identical to Pole #1 and Pole #2 and is shown on Picture 3.



Resulting critical forces are: For Pole #1 = **398 N** For Pole #2 = **362 N**

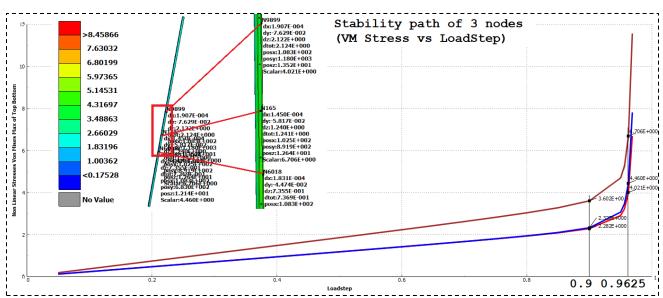
3. Numerical non-linear buckling

Buckling in non-linear cases is analyzed with the help of Stability Path. Since Poles have very simple structure, any nodes can be chosen for Stability Path, as shown on Pictures 4 and 5.

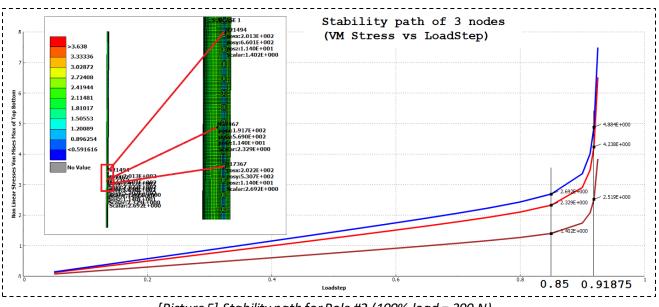
<u>Results for Pole #1 are:</u> Pole #1 was analyzed with Load = 410 N. Non-linear effects start at = 0.9 x 410 N = 369 N Stresses begin to raise exponentially (defining critical load) at = 0.9625 x 410 N = **395 N**

Results for Pole #2 are:

Pole #2 was analyzed with Load = 390 N. Non-linear effects start at = $0.85 \times 390 = 331.5 \text{ N}$ Stresses begin to raise exponentially (defining critical load) at = $0.91875 \times 390 = 358 \text{ N}$



[Picture 4] Stability path for Pole #1 (100% load = 410 N).



[Picture 5] Stability path for Pole #2 (100% load = 390 N).

4. Conclusions

Summary of various critical force calculation methods is shown in the table:

	Analytical	Numerical Linear	Numerical Non-Linear
Pole #1 Critical Force	384 N	398 N	395 N
Pole #2 Critical Force	356 N	362 N	358 N

Final Results, bases on the safest method (analytical):

Pole #1 Critical Force	384 N	
Pole #2 Critical Force	356 N	

Please, notice that **safety factor** *should be considered on the top of Critical Force (based on industry standards) before assuming final permissible load!*

Engineering center Frontier Machines Engineering stress analysis of any difficulty Examples of our work: http://frontiermachines.ru/en/projects/